Модуль числа. Сравнение чисел

При решении уравнений и неравенств, а также задач с модулями требуется расположить найденные корни на числовой прямой. Как ты знаешь, найденные корни могут быть разными. Они могут быть такими: , а могут быть и вот такими: , .

Соответственно, если числа не рациональные а иррациональные (если забыл что это, ищи в теме ), или представляют собой сложные математические выражения, то расположить их на числовой прямой весьма проблематично. Тем более, что калькуляторами на экзамене пользоваться нельзя, а приближенный подсчет не дает 100% гарантий, что одно число меньше другого (вдруг разница между сравниваемыми числами?).

Конечно, ты знаешь, что положительные цифры всегда больше отрицательных, и что если мы представим числовую ось, то при сравнении, наибольшие числа будут находиться правее, чем наименьшие: ; ; и т.д.

Но всегда ли все так легко? Где на числовой оси мы отметим, .

Как их сравнить, например, с числом? Вот в этом-то и загвоздка …)

Для начала поговорим в общих чертах как и что сравнивать.

Важно: преобразования желательно делать такими, чтобы знак неравенства не менялся! То есть в ходе преобразований нежелательно домножать на отрицательное число, и нельзя возводить в квадрат, если одна из частей отрицательна.

Сравнение дробей

Итак, нам необходимо сравнить две дроби: и.

Есть несколько вариантов, как это сделать.

Вариант 1. Привести дроби к общему знаменателю.

Запишем в виде обыкновенной дроби:

- (как ты видишь, я также сократила на числитель и знаменатель).

Теперь нам необходимо сравнить дроби:

Сейчас мы можем продолжить сравнивать также двумя способами. Мы можем:

  1. просто привести все к общему знаменателю, представив обе дроби как неправильные (числитель больше знаменателя):

    Какое число больше? Правильно, то, у которого числитель больше, то есть первое.

  2. «отбросим» (считай, что мы из каждой дроби вычли единицу, и соотношение дробей друг с другом, соответственно, не изменилось) и будем сравнивать дроби:

    Приводим их также к общему знаменателю:

    Мы получили абсолютно точно такой же результат, как и в предыдущем случае - первое число больше, чем второе:

    Проверим также, правомерно ли мы вычли единицу? Посчитаем разницу в числителе при первом расчете и втором:
    1)
    2)

Итак, мы рассмотрели, как сравнивать дроби, приводя их к общему знаменателю. Перейдем к другому методу - сравнение дробей приводя их к общему… числителю.

Вариант 2. Сравнение дробей с помощью приведения к общему числителю.

Да, да. Это не опечатка. В школе редко кому рассказывают этот метод, но очень часто он весьма удобен. Чтобы ты быстро понял его суть, задам тебе только один вопрос - «в каких случаях значение дроби наибольшее?» Конечно, ты скажешь «когда числитель максимально большой, а знаменатель максимально маленький».

Например, ты же точно скажешь, что Верно? А если нам надо сравнить такие дроби: ? Думаю, ты тоже сразу верно поставишь знак, ведь в первом случае делят на частей, а во втором на целых, значит, во втором случае кусочки получаются совсем маленькие, и соответственно: . Как ты видишь, знаменатели здесь разные, а вот числители одинаковы. Однако, для того, чтобы сравнить эти две дроби, тебе не обязательно искать общий знаменатель. Хотя… найди его и посмотри, вдруг знак сравнения все же неправильный?

А знак-то тот же.

Вернемся к нашему изначальному заданию - сравнить и. Будем сравнивать и. Приведем данные дроби не к общему знаменателю, а к общему числителю. Для этого просто числитель и знаменатель первой дроби умножим на. Получим:

и. Какая дробь больше? Правильно, первая.

Вариант 3. Сравнение дробей с помощью вычитания.

Как сравнивать дроби с помощью вычитания? Да очень просто. Мы из одной дроби вычитаем другую. Если результат получается положительным, то первая дробь (уменьшаемое) больше второй (вычитаемое), а если отрицательным, то наоборот.

В нашем случае попробуем из второй вычесть первую дробь: .

Как ты уже понял, мы так же переводим в обыкновенную дробь и получаем тот же результат - . Наше выражение приобретает вид:

Далее нам все равно придется прибегнуть к приведению к общему знаменателю. Вопрос как: первым способом, преобразуя дроби в неправильные, или вторым, как бы «убирая» единицу? Кстати, это действие имеет вполне математическое обоснование. Смотри:

Мне больше нравится второй вариант, так как перемножение в числителе при приведении к общему знаменателю становится в разы проще.

Приводим к общему знаменателю:

Здесь главное не запутаться, какое число и откуда мы отнимали. Внимательно посмотреть ход решения и случайно не перепутать знаки. Мы отнимали от второго числа первое и получили отрицательный ответ, значит?.. Правильно, первое число больше второго.

Разобрался? Попробуй сравнить дроби:

Стоп, стоп. Не спеши приводить к общему знаменателю или вычитать. Посмотри: можно легко перевести в десятичную дробь. Сколько это будет? Правильно. Что в итоге больше?

Это еще один вариант - сравнение дробей путем приведения к десятичной дроби.

Вариант 4. Сравнение дробей с помощью деления.

Да, да. И так тоже можно. Логика проста: когда мы делим большее число на меньшее, в ответе у нас получается число, больше единицы, а если мы делим меньшее число на большее, то ответ приходится на промежуток от до.

Чтобы запомнить это правило, возьми для сравнения любые два простых числа, например, и. Ты же знаешь, что больше? Теперь разделим на. Наш ответ - . Соответственно, теория верна. Если мы разделим на, что мы получим - меньше единицы, что в свою очередь подтверждает, что на самом деле меньше.

Попробуем применить это правило на обыкновенных дробях. Сравним:

Разделим первую дробь на вторую:

Сократим на и на.

Полученный результат меньше, значит делимое меньше делителя, то есть:

Мы разобрали все возможные варианты сравнения дробей. Как ты видишь их 5:

  • приведение к общему знаменателю;
  • приведение к общему числителю;
  • приведение к виду десятичной дроби;
  • вычитание;
  • деление.

Готов тренироваться? Сравни дроби оптимальным способом:

Сравним ответы:

  1. (- перевести в десятичную дробь)
  2. (поделить одну дробь на другую и сократить на числитель и знаменатель)
  3. (выделить целую часть и сравнивать дроби по принципу одинакового числителя)
  4. (поделить одну дробь на другую и сократить на числитель и знаменатель).

2. Сравнение степеней

Теперь представим, что нам необходимо сравнить не просто числа, а выражения, где существует степень ().

Конечно, ты без труда поставишь знак:

Ведь если мы заменим степень умножением, мы получим:

Из этого маленького и примитивного примера вытекает правило:

Попробуй теперь сравнить следующее: . Ты так же без труда поставишь знак:

Потому что, если мы заменим возведение степень на умножение…

В общем, ты все понял, и это совсем несложно.

Сложности возникают только тогда, когда при сравнении у степеней разные и основания, и показатели. В этом случае необходимо попробовать привести к общему основанию. Например:

Разумеется, ты знаешь, что это, соответственно, выражение приобретает вид:

Раскроем скобки и сравним то, что получится:

Несколько особый случай, когда основание степени () меньше единицы.

Если, то из двух степеней и больше та, показатель которой меньше.

Попробуем доказать это правило. Пусть.

Введем некоторое натуральное число, как разницу между и.

Логично, неправда ли?

А теперь еще раз обратим внимание на условие - .

Соответственно: . Следовательно, .

Например:

Как ты понял, мы рассмотрели случай, когда основания степеней равны. Теперь посмотрим, когда основание находится в промежутке от до, но равны показатели степени. Здесь все очень просто.

Запомним, как это сравнивать на примере:

Конечно, ты быстро посчитал:

Поэтому, когда тебе будут попадаться похожие задачи для сравнения, держи в голове какой-нибудь простой аналогичный пример, который ты можешь быстро просчитать, и на основе этого примера проставляй знаки в более сложном.

Выполняя преобразования, помни, что если ты домножаешь, складываешь, вычитаешь или делишь, то все действия необходимо делать и с левой и с правой частью (если ты умножаешь на, то умножать необходимо и то, и другое).

Кроме этого, бывают случаи, когда делать какие-либо манипуляции просто невыгодно. Например, тебе нужно сравнить. В данном случае, не так сложно возвести в степень, и расставить знак исходя из этого:

Давай потренируемся. Сравни степени:

Готов сравнивать ответы? Вот что у меня получилось:

  1. - то же самое, что
  2. - то же самое, что
  3. - то же самое, что
  4. - то же самое, что

3. Сравнение чисел с корнем

Для начала вспомним, что такое корни? Вот эту запись помнишь?

Корнем степени из действительного числа называется такое число, для которого выполняется равенство.

Корни нечетной степени существуют для отрицательных и положительных чисел, а корни четной степени - только для положительных.

Значением корня часто является бесконечная десятичная дробь, что затрудняет его точное вычисление, поэтому важно уметь сравнивать корни.

Если ты подзабыл, что это такое и с чем его едят - . Если все помнишь - давай учиться поэтапно сравнивать корни.

Допустим, нам необходимо сравнить:

Чтобы сравнить эти два корня, не нужно делать никаких вычислений, просто проанализируй само понятие «корень». Понял, о чем я говорю? Да вот об этом: иначе можно записать как третья степень какого-то числа, равна подкоренному выражению.

А что больше? или? Это ты, конечно, сравнишь без всякого труда. Чем большее число мы возводим в степень, тем больше будет значение.

Итак. Выведем правило.

Если показатели степени корней одинаковы (в нашем случае это), то необходимо сравнивать подкоренные выражения (и) - чем больше подкоренное число, тем больше значение корня при равных показателях.

Сложно запомнить? Тогда просто держи в голове пример и. Что больше?

Показатели степени корней одинаковы, так как корень квадратный. Подкоренное выражение одного числа () больше другого (), значит, правило действительно верное.

А что, если подкоренные выражения одинаковые, а вот степени корней разные? Например: .

Тоже вполне понятно, что при извлечении корня большей степени получится меньшее число. Возьмем для примера:

Обозначим значение первого корня как, а второго - как, то:

Ты без труда видишь, что в данных уравнениях должно быть больше, следовательно:

Если подкоренные выражения одинаковы (в нашем случае), а показатели степени корней различны (в нашем случае это и), то необходимо сравнивать показатели степени (и) - чем больше показатель, тем меньше данное выражение .

Попробуй сравнить следующие корни:

Сравним полученные результаты?

С этим благополучно разобрались:). Возникает другой вопрос: а что если у нас все разное? И степень, и подкоренное выражение? Не все так сложно нам нужно всего- навсего… «избавиться» от корня. Да, да. Именно избавиться)

Если у нас различные и степени и подкоренные выражения, необходимо найти наименьшее общее кратное (читай раздел про ) для показателей корней и возвести оба выражения в степень, равную наименьшему общему кратному.

Что мы все на словах и на словах. Приведем пример:

  1. Смотрим показатели корней - и. Наименьшее общее кратное у них - .
  2. Возведем оба выражения в степень:
  3. Преобразуем выражение и раскроем скобки (подробнее в главе ):
  4. Посчитаем, что у нас получилось, и поставим знак:

4. Сравнение логарифмов

Вот так, медленно, но верно, мы подошли к вопросу как же сравнивать логарифмы. Если ты не помнишь что это за зверь такой, советую для начала прочитать теорию из раздела . Прочитал? Тогда ответь на несколько важных вопросов:

  1. Что называется аргументом логарифма, а что его основанием?
  2. От чего зависит, возрастает ли функция или убывает?

Если все помнишь и отлично усвоил - приступаем!

Для того, чтобы сравнивать логарифмы между собой, необходимо знать всего 3 приема:

  • приведение к одинаковому основанию;
  • приведение к одинаковому аргументу;
  • сравнение с третьим числом.

Изначально, обрати внимание на основание логарифма. Ты помнишь, что если оно меньше, то функция убывает, а если больше, то возрастает. Именно на этом будет основаны наши суждения.

Рассмотрим сравнение логарифмов, которые уже приведены к одинаковому основанию, либо аргументу.

Для начала упростим задачу: пусть в сравниваемых логарифмах равные основания . Тогда:

  1. Функция, при возрастает на промежутке от, значит по определению, то («прямое сравнение»).
  2. Пример: - основания одинаковы,соответственно сравниваем аргументы: , следовательно:
  3. Функция, при, убывает на промежутке от, значит по определению, то («обратное сравнение»). - основания одинаковы, соответственно сравниваем аргументы: , однако, знак у логарифмов будет «обратный», так как функция убывает: .

Теперь рассмотрим случаи, когда основания различны, но одинаковы аргументы.

  1. Основание больше.
    • . В этом случае используем «обратное сравнение». Например: - аргументы одинаковы, и. Сравниваем основания: однако, знак у логарифмов будет «обратный»:
  2. Основание а находится в промежутке.
    • . В этом случае используем «прямое сравнение». Например:
    • . В этом случае используем «обратное сравнение». Например:

Запишем все в общем табличном виде:

, при этом , при этом

Соответственно, как ты уже понял, при сравнении логарифмов нам необходимо привести к одинаковому основанию, либо аргументу, К одинаковому основанию мы приходим, используя формулу перехода от одного основания к другому.

Можно также сравнивать логарифмы с третьим числом и на основании этого делать вывод о том, что меньше, а что больше. Например, подумай, как сравнить вот эти два логарифма?

Небольшая подсказка - для сравнения тебе очень поможет логарифм, аргумент которого будет равен.

Подумал? Давай решать вместе.

Мы легко сравним с тобой эти два логарифма:

Не знаешь как? Смотри выше. Мы только что это разбирали. Какой знак там будет? Правильно:

Согласен?

Сравним между собой:

У тебя должно получиться следующее:

А теперь соедини все наши выводы в один. Получилось?

5. Сравнение тригонометрических выражений.

Что такое синус, косинус, тангенс, котангенс? Для чего нужна единичная окружность и как на ней найти значение тригонометрических функций? Если ты не знаешь ответы на эти вопросы, очень рекомендую тебе прочитать теорию по этой теме. А если знаешь, то сравнить тригонометрические выражения между собой для тебя не составляет труда!

Немного освежим память. Нарисуем единичную тригонометрическую окружность и вписанный в нее треугольник. Справился? Теперь отметь, по какой стороне у нас откладывается косинус, а по какой синус, используя стороны треугольника. (ты, конечно помнишь, что синус, это отношение противолежащей стороны к гипотенузе, а косинус прилежащей?). Нарисовал? Отлично! Последний штрих - проставь, где у нас будет, где и так далее. Проставил? Фух) Сравниваем, что получилось у меня и у тебя.

Фух! А теперь приступаем к сравнению!

Допустим, нам необходимо сравнить и. Нарисуй эти углы, используя подсказки в рамочках (где у нас отмечено, где), откладывая точки на единичной окружности. Справился? Вот что у меня получилось.

Теперь опустим перпендикуляр из точек, отмеченных нами на окружности на ось … Какую? Какая ось у нас показывает значение синусов? Правильно, . Вот что у тебя должно получиться:

Глядя на этот рисунок, что больше: или? Конечно, ведь точка находится выше точки.

Аналогичным образом мы сравниваем значение косинусов. Только перпендикуляр мы опускаем на ось… Верно, . Соответственно, смотрим, какая точка находится правее (ну или выше, как в случае с синусами), то значение и больше.

Наверное, ты уже догадываешься, как сравнивать тангенсы, верно? Все, что нужно, знать что такое тангенс. Так что такое тангенс?) Правильно, отношение синуса к косинусу.

Чтобы сравнить тангенсы мы так же рисуем угол, как и в предыдущем случае. Допустим, нам необходимо сравнить:

Нарисовал? Теперь так же отмечаем значения синуса на координатной оси. Отметил? А теперь укажи значения косинуса на координатной прямой. Получилось? Давай сравним:

А теперь проанализируй написанное. - мы большой отрезок делим на маленький. В ответе будет значение, которое точно больше единицы. Верно?

А при мы маленький делим на большой. В ответе будет число, которое точно меньше единицы.

Так значение какого тригонометрического выражения больше?

Правильно:

Как ты теперь понимаешь, сравнение котангенсов - то же самое, только наоборот: мы смотрим, как относятся друг к другу отрезки, определяющие косинус и синус.

Попробуй самостоятельно сравнить следующие тригонометрические выражения:

Примеры.

Ответы.

СРАВНЕНИЕ ЧИСЕЛ. СРЕДНИЙ УРОВЕНЬ.

Какое из чисел больше: или? Ответ очевиден. А теперь: или? Уже не так очевидно, правда? А так: или?

Часто нужно знать, какое из числовых выражений больше. Например, чтобы при решении неравенства расставить точки на оси в правильном порядке.

Сейчас научу тебя сравнивать такие числа.

Если надо сравнить числа и, между ними ставим знак (происходит от латинского слова Versus или сокращенно vs. - против): . Этот знак заменяет неизвестный нам знак неравенства (). Далее будем выполнять тождественные преобразования до тех пор, пока не станет ясно, какой именно знак нужно поставить между числами.

Суть сравнения чисел состоит в следующем: мы относимся к знаку так, будто это какой-то знак неравенства. И с выражением мы можем делать все то же, что делаем обычно с неравенствами:

  • прибавить любое число к обеим частям (и вычесть, конечно, тоже можем)
  • «перенести все в одну сторону», то есть вычесть из обеих частей одно из сравниваемых выражений. На месте вычитаемого выражения останется: .
  • домножать или делить на одно и то же число. Если это число отрицательное, знак неравенства меняется на противоположный: .
  • возводить обе части в одну и ту же степень. Если эта степень - четная, необходимо убедиться, что обе части имеют одинаковый знак; если обе части положительны, при возведении в степень знак не меняется, а если отрицательны, тогда меняется на противоположный.
  • извлечь корень одинаковой степени из обеих частей. Если извлекаем корень четной степени, необходимо предварительно убедиться, что оба выражения неотрицательны.
  • любые другие равносильные преобразования.

Важно: преобразования желательно делать такими, чтобы знак неравенства не менялся! То есть в ходе преобразований нежелательно домножать на отрицательное число, и нельзя возводить в квадрат, если одна из частей отрицательна.

Разберем несколько типичных ситуаций.

1. Возведение в степень.

Пример.

Что больше: или?

Решение.

Поскольку обе части неравенства положительны, можем возвести в квадрат, чтобы избавиться от корня:

Пример.

Что больше: или?

Решение.

Здесь тоже можем возвести в квадрат, но это нам поможет избавиться только от квадратного корня. Здесь надо возводить в такую степень, чтобы оба корня исчезли. Значит, показатель этой степени должен делиться и на (степень первого корня), и на. Таким числом является, значит, возводим в -ю степень:

2. Умножение на сопряженное.

Пример.

Что больше: или?

Решение.

Домножим и разделим каждую разность на сопряженную сумму:

Очевидно, что знаменатель в правой части больше знаменателя в левой. Поэтому правая дробь меньше левой:

3. Вычитание

Вспомним, что.

Пример.

Что больше: или?

Решение.

Конечно, мы могли бы возвести все в квадрат, перегруппировать, и снова возвести в квадрат. Но можно поступить хитрее:

Видно, что в левой части каждое слагаемое меньше каждого слагаемого, находящегося в правой части.

Соответственно, сумма всех слагаемых, находящихся в левой части, меньше суммы всех слагаемых, находящихся в правой части.

Но будь внимателен! У нас спрашивали что больше...

Правая часть больше.

Пример.

Сравните числа и.

Решение.

Вспоминаем формулы тригонометрии:

Проверим, в каких четвертях на тригонометрической окружности лежат точки и.

4. Деление.

Здесь тоже используем простое правило: .

При или, то есть.

При знак меняется: .

Пример.

Выполни сравнение: .

Решение.

5. Сравните числа с третьим числом

Если и, то (закон транзитивности).

Пример.

Сравните.

Решение.

Сравним числа не друг с другом, а с числом.

Очевидно, что.

С другой стороны, .

Пример.

Что больше: или?

Решение.

Оба числа больше, но меньше. Подберем такое число, чтобы оно было больше одного, но меньше другого. Например, . Проверим:

6. Что делать с логарифмами?

Ничего особенного. Как избавляться от логарифмов, подробно описано в теме . Основные правила такие:

\[{\log _a}x \vee b{\rm{ }} \Leftrightarrow {\rm{ }}\left[ {\begin{array}{*{20}{l}}{x \vee {a^b}\;{\rm{при}}\;a > 1}\\{x \wedge {a^b}\;{\rm{при}}\;0 < a < 1}\end{array}} \right.\] или \[{\log _a}x \vee {\log _a}y{\rm{ }} \Leftrightarrow {\rm{ }}\left[ {\begin{array}{*{20}{l}}{x \vee y\;{\rm{при}}\;a > 1}\\{x \wedge y\;{\rm{при}}\;0 < a < 1}\end{array}} \right.\]

Также можем добавить правило про логарифмы с разными основаниями и одинаковым аргументом:

Объяснить его можно так: чем больше основание, тем в меньшую степень его придется возвести, чтобы получить один и тот же. Если же основание меньше, то все наоборот, так как соответствующая функция монотонно убывающая.

Пример.

Сравните числа: и.

Решение.

Согласно вышеописанным правилам:

А теперь формула для продвинутых.

Правило сравнения логарифмов можно записать и короче:

Пример.

Что больше: или?

Решение.

Пример.

Сравните, какое из чисел больше: .

Решение.

СРАВНЕНИЕ ЧИСЕЛ. КОРОТКО О ГЛАВНОМ

1. Возведение в степень

Если обе части неравенства положительны, их можно возвести в квадрат, чтобы избавиться от корня

2. Умножение на сопряженное

Сопряженным называется множитель, дополняющий выражение до формулы разности квадратов: - сопряженное для и наоборот, т.к. .

3. Вычитаение

4. Деление

При или то есть

При знак меняется:

5. Сравнение с третьим числом

Если и, то

6. Сравнение логарифмов

Основные правила:

Логарифмы с разными основаниями и одинаковым аргументом:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 899 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Определение 1. Если два числа 1) a и b при делении на p дают один и тот же остаток r , то такие числа называются равноостаточными или сравнимыми по модулю p .

Утверждение 1. Пусть p какое нибудь положительное число. Тогда всякое число a всегда и притом единственным способом может быть представлено в виде

Но эти числа можно получить задав r равным 0, 1, 2,..., p −1. Следовательно sp+r=a получит всевозможные целые значения.

Покажем, что это представление единственно. Предположим, что p можно представить двумя способами a=sp+r и a=s 1 p +r 1 . Тогда

(2)

Так как r 1 принимает один из чисел 0,1, ..., p −1, то абсолютное значение r 1 −r меньше p . Но из (2) следует, что r 1 −r кратно p . Следовательно r 1 =r и s 1 =s .

Число r называется вычетом числа a по модулю p (другими словами, число r называется остатком от деления числа a на p ).

Утверждение 2. Если два числа a и b сравнимы по модулю p , то a−b делится на p .

Действительно. Если два числа a и b сравнимы по модулю p , то они при делении на p имеют один и тот же остаток p . Тогда

делится на p , т.к. правая часть уравнения (3) делится на p .

Утверждение 3. Если разность двух чисел делится на p , то эти числа сравнимы по модулю p .

Доказательство. Обозначим через r и r 1 остатки от деления a и b на p . Тогда

Примеры 25≡39 (mod 7), −18≡14 (mod 4).

Из первого примера следует, что 25 при делении на 7 дает тот же остаток, что и 39. Действительно 25=3·7+4 (остаток 4). 39=3·7+4 (остаток 4). При рассмотрении второго примера нужно учитывать, что остаток должен быть неотрицательным числом, меньшим, чем модуль (т.е. 4). Тогда можно записать: −18=−5·4+2 (остаток 2), 14=3·4+2 (остаток 2). Следовательно −18 при делении на 4 дает остаток 2, и 14 при делении на 4 дает остаток 2.

Свойства сравнений по модулю

Свойство 1. Для любого a и p всегда

не всегда следует сравнение

где λ это наибольший общий делитель чисел m и p .

Доказательство. Пусть λ наибольший общий делитель чисел m и p . Тогда

Так как m(a−b) делится на k , то

Для двух целых числа х и у введем отношение сравнимости по четности, если их разность - четное число. Легко проверить, что при этом выполняются все три ранее введенные условия эквивалентности. Введенное таким образом отношение эквивалентности разбивает все множество целых чисел на два непересекающихся подмножества: подмножество четных чисел и подмножество нечетных чисел.

Обобщая этот случай, будем говорить, что два целых числа, отличающиеся на кратное какого-нибудь фиксированного натурального числа, эквивалентны. На этом основано понятие сравнимости по модулю, введенное Гауссом.

Число а , сравнимо с b по модулю m , если их разность делится на фиксированное натуральное число m , то есть а - b делится на m . Символически это записывается в виде:

а ≡ b(mod m) ,

а читается так: а сравнимо с b по модулю m .

Введенное таким образом отношение, благодаря глубокой аналогии между сравнениями и равенствами, упрощает вычисления, в которых числа, отличающиеся на кратное m , фактически не различаются (так как сравнение есть равенство с точностью до некоторого кратного m).

Например, числа 7 и 19 сравнимы по модулю 4, но не сравнимы по модулю 5, т.к. 19-7=12 делится на 4 и не делится на 5.

Можно сказать также, что число х по модулю m равно остатку от деления нацело числа х на m , так как

x=km+r, r = 0, 1, 2, ... , m-1 .

Легко проверить, что сравнимость чисел по данному модулю обладает всеми свойствами эквивалентности. Поэтому множество целых чисел разбивается на классы чисел, сравнимых между собой по модулю m . Число таких классов равно m , и все числа одного класса при делении на m дают один и тот же остаток. Например, если m = 3, то получается три класса: класс чисел, кратных 3 (дающих при делении на 3 остаток 0), класс чисел, дающих при делении на 3 остаток 1, класс чисел, дающих при делении на 3 остаток 2.

Примеры использования сравнений доставляются хорошо известными признаками делимости. Обычное представление числа n цифрами в десятичной системе счисления имеет вид:

n = c10 2 + b10 1 + a10 0 ,

где а, b, с, - цифры числа, записанные справа налево, так что а - число единиц, b - числе десятков и т.д. Так как 10 k 1(mod9) при любом к≥0, то из написанного следует, что

n ≡ c + b + a (mod9),

откуда вытекает признак делимости на 9: n делится на 9 тогда и только тогда, когда сумма его цифр делится на 9. Это рассуждение проходит также и при замене 9 на 3.

Получим признак делимости на 11. Имеют место сравнения:

10≡- 1(mod11), 10 2 1(mod11) 10 3 ≡- 1(mod11), и так далее. Поэтому n ≡ c - b + a - …. (mod11).

Следовательно, n делится на 11 тогда и только тогда, когда знакопеременная сумма его цифр а - b + с -... делится на 11.

Например, знакопеременная сумма цифр числа 9581 есть 1 - 8 + 5 - 9 = -11, она делится на 11, значит и число 9581 делится на 11.

Если имеют места сравнения: , то их можно почленно складывать, вычитать и перемножать так же, как и равенства:

Сравнение всегда можно умножить на целое число:

если , то

Однако сокращение сравнения на какой-либо множитель не всегда возможно, Например, , но нельзя произвести сокращение на общий для чисел 42 и 12 множитель 6; такое сокращение приводит к неверному результату, поскольку .

Из определения сравнимости по модулю следует, что сокращение на множитель допустимо, если этот множитель взаимно прост с модулем.

Выше было уже отмечено, что любое целое число сравнимо по mod m с одним из следующих чисел: 0, 1, 2,... , m-1.

Помимо этого ряда, имеются и другие ряды чисел, обладающие тем же свойством; так, например, любое число сравнимо по mod 5 с одним из следующих чисел: 0, 1, 2, 3, 4, но так же сравнимо с одним из следующих чисел: 0, -4, -3, -2, -1, или 0, 1, -1, 2, -2. Любой такой ряд чисел называется полной системой вычетов по модулю 5.

Таким образом, полной системой вычетов по modm называется любой ряд из m чисел, никакие два из которых несравнимы друг с другом. Обычно используется полная система вычетов, состоящая из чисел: 0, 1, 2, ..., m -1. Вычетом числа n по модулю m является остаток от деления n на m , что следует из представления n = km + r , 0<r <m - 1.

ПЕРВУШКИН БОРИС НИКОЛАЕВИЧ

ЧОУ «Санкт-Петербургская Школа «Тет-а-Тет»

Учитель Математики Высшей категории

Сравнение чисел по модулю

Определение 1. Если два числа 1 ) a и b при делении на p дают один и тот же остаток r , то такие числа называются равноостаточными или сравнимыми по модулю p .

Утверждение 1. Пусть p какое нибудь положительное число. Тогда всякое число a всегда и притом единственным способом может быть представлено в виде

a=sp+r ,

(1)

где s - число, и r одно из чисел 0,1, ..., p −1.

1 ) В данной статье под словом число будем понимать целое число.

Действительно. Если s получит значение от −∞ до +∞, то числа sp представляют собой совокупность всех чисел, кратных p . Рассмотрим числа между sp и ( s+ 1) p=sp+p . Так как p целое положительное число, то между sp и sp+p находятся числа

Но эти числа можно получить задав r равным 0, 1, 2,..., p −1. Следовательно sp+r=a получит всевозможные целые значения.

Покажем, что это представление единственно. Предположим, что p можно представить двумя способами a=sp+r и a=s 1 p + r 1 . Тогда

или

(2)

Так как r 1 принимает один из чисел 0,1, ..., p −1, то абсолютное значение r 1 r меньше p . Но из (2) следует, что r 1 r кратно p . Следовательно r 1 = r и s 1 = s .

Число r называется вычетом числа a по модулю p (другими словами, число r называется остатком от деления числа a на p ).

Утверждение 2. Если два числа a и b сравнимы по модулю p , то a−b делится на p .

Действительно. Если два числа a и b сравнимы по модулю p , то они при делении на p имеют один и тот же остаток p . Тогда

где s и s 1 некоторые целые числа.

Разность этих чисел

(3)

делится на p , т.к. правая часть уравнения (3) делится на p .

Утверждение 3. Если разность двух чисел делится на p , то эти числа сравнимы по модулю p .

Доказательство. Обозначим через r и r 1 остатки от деления a и b на p . Тогда

откуда

По утверждению a−b делится на p . Следовательно r r 1 тоже делится на p . Но т.к. r и r 1 числа 0,1,..., p −1, то абсолютное значение | r r 1 |< p . Тогда, для того, чтобы r r 1 делился на p должно выполнятся условие r = r 1 .

Из утверждения следует, что сравнимые числа - это такие числа, разность которых делится на модуль.

Если нужно записать, что числа a и b сравнимы между собой по модулю p , то пользуются обозначением (введенным Гауссом):

a≡b mod( p )

Примеры 25≡39 (mod 7), −18≡14 (mod 4).

Из первого примера следует, что 25 при делении на 7 дает тот же остаток, что и 39. Действительно 25=3·7+4 (остаток 4). 39=3·7+4 (остаток 4). При рассмотрении второго примера нужно учитывать, что остаток должен быть неотрицательным числом, меньшим, чем модуль (т.е. 4). Тогда можно записать: −18=−5·4+2 (остаток 2), 14=3·4+2 (остаток 2). Следовательно −18 при делении на 4 дает остаток 2, и 14 при делении на 4 дает остаток 2.

Свойства сравнений по модулю

Свойство 1. Для любого a и p всегда

a≡a mod ( p ).

Свойство 2. Если два числа a и c сравнимы с числом b по модулю p , то a и c сравнимы между собой по тому же модулю, т.е. если

a≡b mod ( p ), b≡c mod ( p ).

то

a≡c mod ( p ).

Действительно. Из условия свойства 2 следует a−b и b−c делятся на p . Тогда их сумма a−b+(b−c)=a−c также делится на p .

Свойство 3. Если

a≡b mod ( p ) и m≡n mod ( p ),

то

a+m≡b+n mod ( p ) и a−m≡b−n mod ( p ).

Действительно. Так как a−b и m−n делятся на p , то

( a−b )+ ( m−n )=( a+m )−( b+n ) ,

( a−b )−( m−n )=( a−m )−( b−n )

также делятся на p .

Это свойство можно распространить на какое угодно число сравнений, имеющих один и тот же модуль.

Свойство 4. Если

a≡b mod ( p ) и m≡n mod ( p ),

то

Далее m−n делится на p , следовательно b(m−n)=bm−bn также делится на p , значит

bm≡bn mod ( p ).

Таким образом два числа am и bn сравнимы по модулю с одним и тем же числом bm , следовательно они сравнимы между собой (свойство 2).

Свойство 5. Если

a≡b mod ( p ).

то

a k ≡b k mod ( p ).

где k некоторое неотрицательное целое число.

Действительно. Имеем a≡b mod ( p ). Из свойства 4 следует

.................

a k ≡b k mod ( p ).

Все свойства 1-5 представить в следующем утверждении:

Утверждение 4. Пусть f ( x 1 , x 2 , x 3 , ...) целая рациональная функция с целыми коэффициентами и пусть

a 1 b 1 , a 2 b 2 , a 3 b 3 , ... mod ( p ).

тогда

f ( a 1 , a 2 , a 3 , ...)≡ f ( b 1 , b 2 , b 3 , ...) mod ( p ).

При делении все обстоит иначе. Из сравнения

Утверждение 5. Пусть

где λ это наибольший общий делитель чисел m и p .

Доказательство. Пусть λ наибольший общий делитель чисел m и p . Тогда

Так как m(a−b) делится на k , то

имеет нулевой остаток, т.е. m 1 ( a−b ) делится на k 1 . Но числа m 1 и k 1 числа взаимно простые. Следовательно a−b делится на k 1 = k/λ и, тогда, p,q,s.

Действительно. Разность a≡b должна быть числом, кратным p,q,s. и, следовательно должна быть кратным h .

В частном случае, если модули p,q,s взаимно простые числа, то

a≡b mod ( h ),

где h=pqs.

Заметим, что можно допустить сравнения по отрицательным модулям, т.е. сравнение a≡b mod ( p ) означает и в этом случае, что разность a−b делится на p . Все свойства сравнений остаются в силе и для отрицательных модулей.

Сравнение чисел по модулю

Подготовила проект: Зутикова Ирина

МАОУ «Лицей №6»

Класс: 10«а»

Научный руководитель: Желтова Ольга Николаевна

Тамбов

2016

  • Проблема
  • Цель проекта
  • Гипотеза
  • Задачи проекта и план их достижения
  • Сравнения и их свойства
  • Примеры задач и их решения
  • Используемые сайты и литература

Проблема:

Большинство учеников редко используют сравнение чисел по модулю для решений нестандартных и олимпиадных заданий.

Цель проекта:

Показать, как с помощью сравнения чисел по модулю можно решать нестандартные и олимпиадные задания.

Гипотеза:

Более глубокое изучение темы «Сравнение чисел по модулю» поможет ученикам решать некоторые нестандартные и олимпиадные задания.

Задачи проекта и план их достижения:

1.Подробно изучить тему «Сравнение чисел по модулю».

2.Решить несколько нестандартных и олимпиадных заданий, используя сравнение чисел по модулю.

3.Создать памятку для учеников на тему «Сравнение чисел по модулю».

4.Провести урок по теме «Сравнение чисел по модулю» в 10«а» классе.

5.Дать классу домашнее задание по теме «Сравнение по модулю».

6.Сравнить время выполнения задания до и после изучения темы «Сравнение по модулю».

7.Сделать выводы.

Прежде чем начать подробно изучать тему «Сравнение чисел по модулю», я решила сравнить, как она представлена в различных учебниках.

  • Алгебра и начала математического анализа. Углубленный уровень. 10 класс (Ю.М.Колягин и др.)
  • Математика: алгебра, функции, анализ данных. 7 класс (Л.Г.Петерсон и др.)
  • Алгебра и начала математического анализа. Профильный уровень. 10 класс (Е.П.Нелин и др.)
  • Алгебра и начала математического анализа. Профильный уровень. 10 класс (Г.К.Муравин и др.)

Как я выяснила, в некоторых учебниках эта тема даже не затрагивается, не смотря на углубленный уровень. А наиболее понятно и доступно тема представлена в учебнике Л.Г.Петерсона (Глава: Введение в теорию делимости), поэтому попробуем разобраться в «Сравнении чисел по модулю», опираясь на теорию из этого учебника.

Сравнения и их свойства.

Определение: Если два целых числа a и b имеют одинаковые остатки при делении на некоторое целое число m (m>0), то говорят, что a и b сравнимы по модулю m , и пишут:

Теорема: тогда и только тогда, когда разность aи bделится на m.

Свойства:

  1. Рефлексивность сравнений. Любое число aсравнимо само с собой по модулю m (m>0; a,m-целые числа).
  2. Симметричность сравнений. Если число a сравнимо с числом b по модулю m, то число b сравнимо с числом a по тому же модулю(m>0; a,b,m-целые числа).
  3. Транзитивность сравнений. Если число a сравнимо с числом b по модулю m, а число b сравнимо с числом cпо тому же модулю, то число a сравнимо с числом c по модулю m(m>0; a,b,c,m-целые числа).
  4. Если число a сравнимо с числом b по модулю m, то число a n сравнимо счислом b n по модулю m(m>0; a,b,m-целые числа;n-натуральное число).

Примеры задач и их решения.

1.Найти последнюю цифру числа 3 999 .

Решение:

Т.к. последняя цифра числа - это остаток от деления на 10, то

3 999 =3 3 *3 996 =3 3 *(3 4 ) 249 =7*81 249 7(mod 10)

(Т.к. 34=81 1(mod 10);81 n 1(mod10) (по свойству))

Ответ:7.

2.Доказать,что 2 4n -1 делится на 15 без остатка. (Физтех2012)

Решение:

Т.к. 16 1(mod 15), то

16 n -1 0(mod 15) (по свойству); 16n= (2 4 ) n

2 4n -1 0(mod 15)

3.Доказать, что 12 2n+1 +11 n+2 делится без остатка на 133.

Решение:

12 2n+1 =12*144 n 12*11 n (mod 133) (по свойству)

12 2n+1 +11 n+2 =12*11 n +11 n *121=11 n *(12+121) =11 n *133

Число (11 n *133)без остатка делится на 133. Следовательно,(12 2n+1 +11 n+2 )делится без остатка на 133.

4.Найти остаток от деления на 15 числа 2 2015 .

Решение:

Т.к.16 1(mod 15), то

2 2015 8(mod 15)

Ответ:8.

5.Найти остаток от деления на 17 числа 2 2015 . (Физтех2015)

Решение:

2 2015 =2 3 *2 2012 =8*16 503

Т.к.16 -1(mod 17), то

2 2015 -8(mod 15)

8 9(mod 17)

Ответ:9.

6.Доказать, что число 11 100 -1 делится на 100 без остатка. (Физтех2015)

Решение:

11 100 =121 50

121 50 21 50 (mod 100) (по свойству)

21 50 =441 25

441 25 41 25 (mod 100) (по свойству)

41 25 =41*1681 12

1681 12 (-19) 12 (mod 100) (по свойству)

41*(-19) 12 =41*361 6

361 6 (-39) 6 (mod 100)(по свойству)

41*(-39) 6 =41*1521 3

1521 3 21 3 (mod100) (по свойству)

41*21 3 =41*21*441

441 41(mod 100) (по свойству)

21*41 2 =21*1681

1681 -19(mod 100) (по свойству)

21*(-19)=-399

399 1(mod 100) (по свойству)

Значит 11 100 1(mod 100)

11 100 -1 0(mod 100) (по свойству)

7.Даны три числа: 1771,1935,2222. Найти число, при делении на которое остатки трёх данных чисел будут равны. (ВШЭ2016)

Решение:

Пусть неизвестное нам число будет равно а,тогда

2222 1935(mod a); 1935 1771(mod a); 2222 1771(mod a)

2222-1935 0(moda) (посвойству); 1935-1771 0(moda) (по свойству); 2222-1771 0(moda) (по свойству)

287 0(mod a); 164 0(mod a); 451 0(mod a)

287-164 0(moda) (по свойству); 451-287 0(moda)(по свойству)

123 0(mod a); 164 0(mod a)

164-123 0(mod a) (посвойству)

41

  • Олимпиада ВШЭ2016