Можно ли взорвать гранату выстрелом? Взрыв аккумулятора телефона: почему это может произойти? Возможные причины взрыва аккумулятора.

В разделе на вопрос Как можно взорвать машину? Это реально для слабой девушки? 😉 заданный автором Полиночка лучший ответ это да реально, на незачем.

Ответ от Броский [новичек]
Дегенератка тупорогая


Ответ от Европеоидный [гуру]
Я НиХ.... РА не понимаю толи в отпуск, толи машину взорвать -вы уж определитесь!


Ответ от Ђаня Одинцова [гуру]
Глупая ты баба! Я б на месте мужика тебя за машину на месте порешила...


Ответ от Первосортный [гуру]
Бензин вступает в реакцию (с коллосальным выделением тепла) с марганцем. (химия, 7-й класс) Но Игорёк с советом прав, нужно его поместить в презерватив, чтоб убежать сама успела! Но стоит ли? Потом, как следствие, не всегда приятная процедура общения с правоохранительными органами и посещение, увы не экскурсионное, прекрасных заведений УИНА!



Ответ от Пользователь удален [эксперт]
лучше ничего не делай-будешь умней!


Ответ от Sofia $$$$$ [активный]
лудше сахара килограмм ему в бензобак пусть пляшет


Ответ от Игорь Мочалов [гуру]
Взорвать-не взорвать, но капитально исковеркать движок можно.. . презерватив с марганцовкой в бензобак - и готово дело. Вот только не помню, под какую статью попадает нанесение вреда чужому имуществу и сколько за это дают...


Ответ от Виктор иванов [гуру]
ненадо, тебе хуже будет, а так -учи химию


Ответ от Владимир Аронов [гуру]
Ну возьми пояс шахидаобмотайся и прыгни под колеса. Так в войну танки останавливали, а не только машины


Ответ от Павел Бобраков [новичек]
слйшай а оно тебе надо, возьми лучше да гвоздичком вдоль борта глядишь да отойдет


Ответ от тема фейц [гуру]
Вы все по бывшему страдаете.. .
Забейте!

Мы все в опасности, каждый из нас содержит дома (в кармане, на работе) портативные бомбы, способные нанести серьезный вред, вплоть до летального исхода. А дело все в опасной технологии сборки которая стала стандартом для всего мира и ничуть не пугает социум.

Литий-ионный аккумулятор

Сегодня мы все используем массу различных устройств и технических новшеств, работающих на базе литий-ионных аккумуляторов. Это тип электрического аккумулятора, отличающийся от других подобных энергоносителей своей универсальностью, высокой плотностью энергии и неприхотливостью в плане обслуживания.

Несмотря на свои положительные характеристики, подобные батареи представляют собой определенную угрозу. Аккумуляторы данного типа могут взорваться, повредить или уничтожить имущество и, что страшнее, нанести тяжкий вред здоровью или вовсе привести к гибели.

Тем не менее литий-ионные аккумуляторы широко распространены в различных сферах жизни человека. Подобный тип энергоносителя можно обнаружить в автомобилях, самолетах, а главное, в смартфонах и планшетах, которые основная масса людей использует ежедневно, на постоянной основе. Грубо говоря, как было сказано выше, все современное общество носит с собой которые могут быть активированы в случае оплошности, по несчастливой случайности или из-за халатности производителя.

Возможные причины взрыва аккумулятора

Литиевые аккумуляторы протестированы временем и считаются относительно безопасными, если соблюдать все рекомендации производителя, но как часто кто-то хотя бы интересуется инструкцией? Любое нарушение может повлечь за собой печальные последствия. Например, резкое изменение температуры, которое является одной из самых распространенных причин, по которым батареи выходят из строя. В этом случае литий-ионная батарея начинает вырабатывать газ, аккумулятор становится значительно пухлее, в редких случаях можно обнаружить течь. И тот и другой симптом является поводом для незамедлительного прекращения использования устройства, отсоединения батареи и ее грамотной утилизации. Помимо изменения термальных условий, есть ряд других распространенных причин, ведущих к взрыву батареи, на которых стоит акцентировать внимание.

Физическое воздействие и кустарный ремонт

Любое повреждение, изгиб или удар могут привести к чрезмерному нагреву батареи, что непременно повлечет за собой взрыв. То же самое касается проколов, которые часто сопровождают ремонтные работы.

«Мастера на все руки» нередко прибегают к ремонту всего и вся, не обращаясь за помощью к профессионалам. Возможно, новый опыт - это даже здорово, люди развивают свои навыки и экономят деньги, но когда речь заходит о литиевых батареях, следует забыть о своем «мастерстве», потому что разбирать и ремонтировать литий-ионные аккумуляторы нельзя. Это же касается и небольших «палаток», расположенных в торговых центрах и отвечающих за ремонт разного рода электроники.

Переразряд и износ

Как бы это иронично ни звучало, но даже если оставить литий-ионную батарею в покое, то он все еще остается опасным, так как может израсходовать критическую массу заряда. Обычно в таких случаях батарея просто выходит из строя и перестает функционировать, но человеческая глупость смелость не имеет границ. Было зарегистрировано немало попыток вернуть полностью разряженную батарею к жизни, просто поставив ее на зарядку (в функционирующем устройстве или без). И в том и в ином случае аккумулятор может замкнуть, мгновенно нагреться до температуры горения и воспламениться.

Так же, как и старый шкаф может развалиться в любой момент, может перегреться старый аккумулятор. По мере использования он изнашивается, теряет в объеме, повреждаются определенные детали. Придет время, и физические изменения в батарее потребуют замены.

Скандал с Galaxy Note 7

Самый глобальный аккумуляторный коллапс (на рынке мобильных устройств) произошел в 2016 году, вместе с релизом смартфона от компании Samsung. До ныне культовой даты взрыв аккумулятора телефона воспринимался как редкий, маловероятный несчастный случай. Летом 2016 года, когда в течение недели СМИ сообщило о более чем 35 случаях взрывов смартфонов Galaxy Note 7, все изменилось.

Note 7, к слову, был воспринят очень позитивно, аппарат угодил абсолютно всем, но, попытавшись обогнать конкурентов, Samsung просчиталась и серьезно подставилась. К началу сентября официальные представители корейской компании заявили о том, что разворачивают глобальную кампанию по возврату бракованных гаджетов. Телефоны предложили обменять на ту же самую модель, но якобы из новой партии. Не прошло и пары дней, как ситуация повторилась с новым размахом. Люди стали обращаться в Samsung еще чаще, начали гореть машины, портиться имущество, страдали люди, получая серьезные ожоги. В определенный момент корейцы сдали назад, приняв решение о прекращении продаж и сборки телефона.

Причины проблем с Galaxy Note 7

Спустя более чем полгода, по состоянию на январь 2017-го, в компании не дали никаких четких комментариев по поводу произошедшего инцидента. Многие аналитики и лица, знакомые с деятельностью компании, заявляют, что инженерам компании не удается воспроизвести взрыв в лабораторных условиях.

Независимые же организации склоняются к тому, что взрыв происходит из-за проблем с контроллером питания. Сложная (плотная) конструкция смартфона, включающая в себя изогнутый дисплей, спровоцировала соприкосновение двух деталей аккумулятора: катода и анода, что, в свою очередь, привело к чрезмерному нагреву. Литиевая батарея всегда стремится к повышению температуры, это нормально, но производитель должен был озаботиться тем, чтобы в определенный момент, смартфон был лишен питания. К сожалению, этого не произошло. И, вне зависимости от того, насколько аккуратны были пользователи со своими Samsung, взрыв аккумулятора стал массовой проблемой, касающейся всех без исключения.

Последствия для компании

Чтобы понять, чем обернулось подобное происшествие для компании, достаточно поставить себя на их место. Что подумает потребитель о продукте, который в одночасье стал посмешищем и угрозой для жизни? Скорее всего, станет избегать. Но одно дело - репутация, которая сегодня есть, завтра нет, а послезавтра снова есть, другое дело - реальные факты. В компании потерпели убытки, причем довольно серьезные и ощутимые для мобильного подразделения - 22 миллиарда долларов. Телефоны были дистанционно лишены возможности заряжаться, чтобы избежать дальнейших взрывов.

На данный момент телефон не производится, компания ведет расследование и остается лишь надеяться, что взрыв аккумулятора Samsung Note 7, послужит корейцам уроком, который сделает их сильнее.

Случаи взрывов iPhone

Несмотря на свое особое положение на рынке смартфонов и минимальный уровень брака, даже «яблочный» смартфон может превратиться в импровизированную бомбу. Один из самых последних случаев был взрыв новинки от компании Apple, смартфона iPhone 7, который один из поклонников якобы заказал в сети Интернет, а получил уже подорванный гаджет.

Никаких подтверждений относительно самопроизвольного возгорания iPhone так и не последовало, и этот случай списали на обычное раздувание слухов. К счастью владельцев свежих смартфонов из Калифорнии, взрыв аккумулятора «Айфона» стал лишь одним из немногих, вызванных неправильной эксплуатацией (в данном случае чрезмерное физическое воздействие), а не массовой проблемой.

Другие зарегистрированные случаи взрывов iPhone стали последствием короткого замыкания, произошедшего ввиду использования от стороннего производителя.

Как избежать взрыва?

Самое простое, что может сделать любой пользователь, так это заглянуть хоть раз в жизни в инструкции и узнать, насколько опасен аккумулятор в смартфоне, и какого ухода он требует.

Всегда следует точно соблюдать температурный режим, не оставлять смартфон под прямыми солнечными лучами слишком долго. Нельзя самостоятельно извлекать батарею в смартфонах, где эта возможность не предусмотрена производителем (речь идет о гаджетах с монолитным корпусом).

Отдавайте предпочтение устройствам, имеющим хоть какое-то имя, проверенным временем, избегайте импульсивного приобретения самых «топовых» новинок.

Главное, нужно понимать, что взрыв литиевого аккумулятора это реально и очень опасно, по возможности не оставляйте гаджеты на зарядке без присмотра, кто знает, в какой момент технологии подведут и свершится возгорание.

Что дальше?

Сейчас в плане технологий литиевые батареи - это самый дешевый, при этом самый энергоэффективный вариант для мобильных устройств и прочей электроники. Естественно, данный вид аккумуляторов до сих пор находится в приоритете.

На замену могут прийти Несмотря на свое страшное название, подобный тип аккумуляторов совершенно безвреден для человека, а гаджету позволит жить от одного заряда в разы дольше, чем сейчас. К сожалению, развитие в этой области происходит довольно медленно и в ближайшее время подвижек ждать не стоит. Возможно, взрыв аккумулятора "Самсунг Note 7", не пройдет даром и заставит инженеров, работающих в сфере информационных технологий, поторопиться.

Итак, допустим, в вашем городе взорвалась ядерная бомба малой мощности. Как долго вам придется скрываться и где это делать, чтобы избежать последствий в виде радиоактивных осадков?

Михаэль Диллон, ученый из Ливерморской национальной лаборатории, рассказал о радиоактивных осадках и способах выживания. После многочисленных исследований радиоактивных осадков, анализа многих факторов и возможного развития событий, он разработал план действий в случае катастрофы.

При этом план Диллона направлен на простых граждан, у которых нет возможности определить, куда будет дуть ветер и какая была величина взрыва.

Маленькие бомбы

Методика Диллона по защите от радиоактивных осадков пока разработана только в теории. Дело в том, что она рассчитана на небольшие ядерные бомбы от 1 до 10 килотонн.

Диллон утверждает, что сейчас ядерные бомбы ассоциируются у всех с невероятной мощью и разрушениями, которые могли бы произойти во время холодной войны. Однако такая угроза кажется менее вероятной, чем террористические атаки с применением небольших ядерных бомб, в несколько раз меньше тех, что упали на Хиросиму, и просто несравнимо меньше тех, что могли бы уничтожить всё, случись глобальная война между странами.

План Диллона основан на том предположении, что после небольшой ядерной бомбы город выжил, и теперь его жителям надо спасаться от радиоактивных осадков.

На схеме ниже видна разница между радиусом поражения от бомбы в ситуации, которую исследует Диллон, и радиусом бомбы из арсенала холодной войны. Самая опасная зона обозначена темно-синим цветом (стандарт psi — это фунт/дюйм2, который используется для измерения силы взрыва, 1 psi = 720 кг/м2).

Люди, находящиеся в километре от этой зоны взрыва, рискуют получить дозы радиации и ожоги. Диапазон радиационной опасности после взрыва небольшой ядерной бомбы гораздо меньше, чем от термоядерного оружия холодной войны.

Например, боеголовка на 10 килотонн создаст радиационную угрозу на 1 километр от эпицентра, а радиоактивные осадки могут пройти ещё на 10-20 миль. Так что получается, что ядерная атака сегодня - это не мгновенная смерть для всего живого. Может быть, ваш город даже оправится после неё.

Что делать, если бомба взорвалась

Если вы видите яркую вспышку, не подходите к окну - вы можете пострадать, пока оглядываетесь. Как в случае с громом и молнией, взрывная волна передвигается гораздо медленнее, чем взрыв.

Теперь вам придется позаботиться о защите от радиоактивных осадков, но в случае небольшого взрыва, вам не нужно искать специальное изолированное убежище. Для защиты можно будет укрыться в обычном здании, только надо знать, в каком.

Через 30 минут после взрыва вы должны найти подходящее убежище. За 30 минут вся начальная радиация от взрыва исчезнет, и главной опасностью станут радиоактивные частички, размером с песчинку, которые осядут вокруг вас.

Диллон объясняет:

Если во время катастрофы вы находитесь в ненадежном убежище, которое не может обеспечить сносную защиту, и вы знаете, что поблизости нет ни одного такого здания в пределах 15 минут, вам придется подождать полчаса, а затем идти его искать. Убедитесь, что прежде чем вы зайдете в убежище, на вас не будет радиоактивных веществ размером с частички песка.

Но какие здания могут стать нормальным убежищем? Диллон рассказывает следующее:

Между вами и последствиями взрыва должно быть как можно больше препятствий и дистанции. Здания с толстыми бетонными стенами и крышей, большое количество земли, например, когда вы сидите в подвале, со всех сторон окруженном землей. Также можно уйти вглубь больших зданий, чтобы как можно дальше находиться от открытого воздуха с последствиями катастрофы.

Подумайте, где можно найти такое здание в вашем городе, и как далеко оно находится от вас.

Может быть, это подвал вашего дома или здание с большим количеством внутренних помещений и стен, библиотека со стеллажами книг и бетонными стенами или что-нибудь другое. Только выбирайте здания, до которых вы можете добраться в течение получаса, и не надейтесь на транспорт - многие будут бежать из города, и дороги будут полностью забиты.

Допустим, вы добрались до своего убежища, и теперь встает вопрос: как долго сидеть в нем, пока угроза не минует? В фильмах показывают разные развития событий, начиная от нескольких минут в убежище и заканчивая несколькими поколениями в бункере. Диллон утверждает, что все они очень далеки от истины.

Лучше всего оставаться в убежище, пока не придет помощь.

Учитывая то, что мы говорим о небольшой бомбе, радиус поражения которой меньше мили, спасатели должны оперативно среагировать и начать эвакуацию. В том случае, если никто не придет на помощь, в убежище нужно провести не меньше суток, но всё-таки лучше подождать, пока прибудут спасатели - они укажут нужный маршрут эвакуации, чтобы вы не выскочили в места с высоким уровнем радиации.

Принцип действия радиоактивных осадков

Может показаться странным, что достаточно безопасно будет выходить из убежища через сутки, но Диллон объясняет, что самая большая опасность после взрыва исходит от ранних радиоактивных осадков, а они достаточно тяжелые, чтобы осесть уже через несколько часов после взрыва. Как правило, они покрывают зону в непосредственной близости от взрыва, в зависимости от направления ветра.

Эти крупные частицы наиболее опасны из-за высокого уровня радиации, который обеспечит немедленное наступление лучевой болезни. Этим они отличаются от меньших доз радиации, которые через много лет после происшествия.

Если вы укроетесь в убежище, это не спасет вас от перспективы рака в будущем, но зато предотвратит скорую смерть от лучевой болезни.

Стоит также помнить, что радиоактивное загрязнение - это не магическая субстанция, которая летает повсюду и проникает в любое место. Там будет ограниченный регион с высоким уровнем радиации, и после того, как вы покинете убежище, надо будет как можно скорее из него выбраться.

Вот здесь вам и нужны спасатели, которые скажут, где находится граница опасной зоны, и как далеко надо уехать. Конечно, помимо самых опасных больших частиц, в воздухе сохранится много более легких, но они не способны вызвать немедленную лучевую болезнь - то, чего вы пытаетесь избежать после взрыва.

Диллон также отметил, что радиоактивные частицы распадаются очень быстро, так что находиться вне убежища спустя 24 часа после взрыва гораздо безопаснее, чем сразу после него .

Наша поп-культура продолжает смаковать тему ядерного апокалипсиса, когда на планете остаются только немногие выжившие, укрывшиеся в подземных бункерах, но ядерная атака может оказаться не такой разрушительной и масштабной.

Так что стоит подумать о своем городе и прикинуть, куда бежать в случае чего. Может, какое-то уродливое здание из бетона, которое всегда казалось вам выкидышем архитектуры, когда-нибудь спасет вам жизнь.

Моделирование ситуации рождения сверхновой - нелегкое дело. По крайней мере, до недавнего времени все эксперименты терпели крах. Но астрофизикам все-таки удалось взорвать звезду.

11 ноября 1572 г. астроном Тихо Браге (Tycho Brahe ) заметил в созвездии Кассиопеи новую звезду, сияющую так же ярко, как Юпитер. Пожалуй, именно тогда рухнула уверенность в том, что небеса вечны и неизменны, и родилась современная астрономия. Спустя четыре века астрономы поняли, что некоторые звезды, вдруг становясь в миллиарды раз ярче обычных, взрываются. В 1934 г. Фриц Цвикки (Fritz Zwicky ) из Калифорнийского технологического института назвал их «сверхновыми». Они снабжают космическое пространство во Вселенной тяжелыми элементами, управляющими формированием и эволюцией галактик, и помогают изучать расширение пространства.

Цвикки и его коллега Вальтер Бааде (Walter Baade ) предположили, что энергию для взрыва дает звезде гравитация. По их мнению, звезда сжимается, пока ее центральная часть не достигнет плотности атомного ядра. Коллапсирующее вещество может выделить гравитационную потенциальную энергию, достаточную чтобы выбросить наружу ее остатки. В 1960 г. Фред Хойл (Fred Hoyle ) из Кембриджского университета и Вилли Фаулер (Willy Fowler ) из Калтеха считали, что сверхновые похожи на гигантскую ядерную бомбу. Когда звезда типа Солнца сжигает свое водородное, а затем и гелиевое топливо, наступает очередь кислорода и углерода. Синтез этих элементов не только обеспечивает гигантский выброс энергии, но и производит радиоактивный никель-56, распад которого может объяснить послесвечение взрыва, длящееся несколько месяцев.

Обе идеи оказались правильными. В спектрах некоторых сверхновых нет следов водорода (обозначаются как тип I); по-видимому, у большинства из них произошел термоядерный взрыв (тип Iа ), а у остальных (типы Ib и Ic ) - коллапс звезды, сбросившей свой внешний водородный слой. Сверхновые, в спектрах которых обнаружен водород (тип II), также возникают в результате коллапса. Оба явления превращают звезду в разлетающееся газовое облако, а гравитационный коллапс приводит к образованию сверхплотной нейтронной звезды или даже черной дыры. Наблюдения, в особенности сверхновой 1987А (тип II), подтверждают предложенную теорию.

Однако до сих пор взрыв сверхновой остается одной из главных проблем астрофизики. Компьютерные модели воспроизводят его с трудом. Очень сложно заставить звезду взорваться (что само по себе приятно). Звезды - саморегулирующиеся объекты, которые остаются стабильными в течение миллионов и миллиардов лет. Даже умирающие светила имеют механизмы затухания, но не взрыва. Чтобы воспроизвести последний, потребовались многомерные модели, расчет которых был вне возможностей компьютеров.

Взрыв - дело нелегкое

Белые карлики - это неактивные остатки звезд, похожих на Солнце, которые постепенно остывают и затухают. Они могут взрываться как сверхновые типа Ia . Однако, по мнению Хойла и Фаулера, если белый карлик вращается вокруг другой звезды на близкой орбите, он может аккретировать (отсасывать) вещество со своего компаньона, увеличивая тем самым свою массу, центральную плотность и температуру до такой степени, что возможен взрывной синтез из углерода и кислорода.

Термоядерные реакции должны вести себя как обычный огонь. Фронт горения может распространяться через звезду, оставляя за собой «ядерный пепел» (в основном - никель). В каждый момент времени реакции синтеза должны идти в небольшом объеме, в основном - в тонком слое на поверхности пузырей, заполненных «пеплом» и плавающих в глубине белого карлика. Из-за своей низкой плотности пузыри могут всплывать к поверхности звезды.

Но термоядерное пламя будет гаснуть, поскольку выделение энергии приводит к расширению и охлаждению звезды, гася ее горение. В отличие от обычной бомбы, у звезды нет оболочки, ограничивающей ее объем.

Кроме того, в лаборатории невозможно воссоздать взрыв сверхновой, его можно только наблюдать в космосе. Наша группа провела тщательное моделирование, используя суперкомпьютер IBM p690 . Численная модель звезды была представлена расчетной сеткой, имевшей 1024 элемента по каждой из сторон, что позволило разрешить детали размером в несколько километров. Каждый вычислительный сет потребовал более чем 10 20 арифметических операций; с такой задачей мог справиться лишь суперкомпьютер, проделывающий более 10 11 операций в секунду. В итоге все это заняло почти 60 процессоро-лет. Различные вычислительные ухищрения, упрощающие модель и используемые в других областях науки, неприменимы к сверхновым с их асимметричными течениями, экстремальными условиями и гигантским пространственным и температурным диапазоном. Физика частиц, ядерная физика, гидродинамика и теория относительности очень сложны, а модели сверхновых должны оперировать ими одновременно.

Под капотом

Решение пришло с неожиданной стороны - при изучении работы автомобильного двигателя. Перемешивание бензина и кислорода и их воспламенение создают турбулентность, которая, в свою очередь, увеличивает поверхность горения, интенсивно деформируя ее. При этом скорость сжигания топлива, пропорциональная площади горения, возрастает. Но и звезда тоже турбулентна. Потоки газа проходят в ней огромные расстояния с большой скоростью, поэтому малейшие возмущения быстро превращают спокойное течение в турбулентный поток. В сверхновой всплывающие горячие пузыри должны перемешивать вещество, заставляя ядерное горение распространяться так быстро, что звезда не успеет перестроиться и «затушить» пламя.

В исправно работающем двигателе внутреннего сгорания пламя распространяется с дозвуковой скоростью, ограниченной скоростью диффузии тепла сквозь вещество - такой процесс называют дефлаграцией, или быстрым горением. В «стреляющем» двигателе пламя распространяется со сверхзвуковой скоростью в виде ударной волны, проносящейся по кислородно-топливной смеси и сжимающей ее (детонация). Термоядерное пламя может распространяться тоже двумя путями. Детонация способна полностью сжечь звезду, оставив только самые «негорючие» элементы, такие как никель и железо. Однако в продуктах этих взрывов астрономы обнаруживают большое разнообразие элементов, включая кремний, серу и кальций. Следовательно, ядерное горение распространяется, по крайней мере, в начале, как дефлаграция.

В последние годы были созданы надежные модели термоядерной дефлаграции. Исследователи из Калифорнийского (г. Санта-Круз), Чикагского университетов и наша группа опирались при этом на программы, созданные для исследования химического горения и даже для прогноза погоды. Турбулентность - принципиально трехмерный процесс. В турбулентном каскаде кинетическая энергия перераспределяется от больших масштабов к малым и, в конце концов, рассеивается в виде тепла. Исходный поток дробится на все более и более мелкие части. Поэтому моделирование непременно должно быть трехмерным.

Модель сверхновой имеет грибообразный вид: горячие пузыри поднимаются в слоеной среде, сморщиваясь и растягиваясь турбулентностью. Усиленный ею рост скорости ядерных реакций за несколько секунд приводит к разрушению белого карлика, остатки которого разлетаются со скоростью около 10 тыс. км/с, что соответствует наблюдаемой картине.

Но до сих пор не ясно, отчего воспламеняется белый карлик. Кроме того, дефлаграция должна выбрасывать большую часть вещества карлика неизмененной, а наблюдения показывают, что лишь малая часть звезды не изменяется. Вероятно, взрыв обусловлен не только быстрым горением, но и детонацией, а причина сверхновых типа Ia - не только аккреция вещества на белый карлик, но и слияние двух белых карликов.

Гравитационная могила

Другой тип сверхновых, вызванный коллапсом звездного ядра, объяснить труднее. С наблюдательной точки зрения эти сверхновые более разнообразны, чем термоядерные: одни из них имеют водород, другие нет; одни взрываются в плотной межзвездной среде, другие - в почти пустом пространстве; одни выбрасывают огромное количество радиоактивного никеля, другие нет. Энергия выброса и скорость расширения также различаются. Самые мощные из них производят не только классический взрыв сверхновой, но и продолжительный гамма-всплеск (см.: Герелс Н., Леонард П. и Пиро Л. Ярчайшие взрывы во Вселенной // ВМН, № 4, 2003). Эта неоднородность свойств - одна из многих загадок. Сверхновые с коллапсом ядра - основные кандидаты для формирования самых тяжелых элементов, таких как золото, свинец, торий и уран, которые могут образоваться только в особых условиях. Но никто не знает, действительно ли такие предпосылки возникают в звезде, когда ее ядро взрывается.

Несмотря на то, что идея коллапса кажется простой (при сжатии ядра выделяется энергия гравитационной связи, за счет которой выбрасываются внешние слои вещества), трудно понять процесс в деталях. В конце жизни у звезды с массой более 10 масс Солнца образуется слоеная структура, с глубиной появляются слои все более тяжелых элементов. Ядро состоит в основном из железа, а равновесие звезды поддерживается квантовым отталкиванием электронов. Но в конце концов масса звезды подавляет электроны, которые вжимаются в атомные ядра, где начинают реагировать с протонами и образовывать нейтроны и электронные нейтрино. В свою очередь, нейтроны и оставшиеся протоны прижимаются друг к другу все сильнее, пока их собственная сила отталкивания не начнет действовать и не остановит коллапс.

В этот момент сжатие останавливается и сменяется расширением. Вещество, втянутое вглубь гравитацией, начинает частично вытекать наружу. В классической теории данная задача решается с помощью ударной волны, которая возникает, когда внешние слои звезды со сверхзвуковой скоростью налетают на ядро, внезапно замедлившее свое сжатие. Ударная волна движется наружу, сжимая и нагревая вещество, с которым она сталкивается, и в то же время теряет свою энергию, в конце концов затухая. Моделирование показывает, что энергия сжатия быстро рассеивается. Как же в таком случае звезда взрывает себя?

Первой попыткой разрешить задачу стала работа Стирлинга Колгейта (Stirling Colgate ) и Ричарда Уайта (Richard White ) 1966 г., а позже - компьютерные модели Джима Вильсона (Jim Wilson ), созданные им в начале 1980-х гг., когда все трое работали в Ливерморской национальной лаборатории им. Лоуренса. Они предположили, что ударная волна - не единственный переносчик энергии от ядра к внешним слоям звезды. Возможно, вспомогательную роль играют нейтрино, рожденные во время коллапса. На первый взгляд, идея выглядит странной: как известно, нейтрино чрезвычайно неактивны, они так слабо взаимодействуют с другими частицами, что их даже трудно зарегистрировать. Но в сжимающейся звезде они обладают более чем достаточной энергией, чтобы вызвать взрыв, а в условиях предельно высокой плотности неплохо взаимодействуют с веществом. Нейтрино нагревают слой вокруг коллапсирующего ядра сверхновой, поддерживая давление в тормозящейся ударной волне.

Сверхновая с коллапсом ядра

  1. Сверхновые другого рода образуются при сжатии звезд с массами более 8 масс Солнца. Они относятся к типам Ib , Ic или II, в зависимости от наблюдаемых особенностей
  2. Массивная звезда в конце жизни имеет слоистую структуру из разных химических элементов
  3. Железо не участвует в ядерном синтезе, поэтому в ядре не выделяется тепло. Газовое давление падает, и лежащее выше вещество устремляется вниз
  4. За секунду ядро сжимается и превращается в нейтронную звезду. Падающее вещество отскакивает от нейтронной звезды и создает ударную волну
  5. Нейтрино вырывается из новорожденной нейтронной звезды, неравномерно подталкивая наружу ударную волну
  6. Ударная волна проносится по звезде, разрывая ее на части

Как ракета

Но достаточно ли такого дополнительного толчка для поддержания волны и завершения взрыва? Компьютерное моделирование показывало, что недостаточно. Несмотря на то, что газ и поглощает нейтрино, и излучает их; модели показывали, что потери доминируют, и поэтому взрыв не получается. Но в этих моделях было одно упрощение: звезда в них считалась сферически симметричной. Поэтому игнорировались многомерные явления, такие как конвекция и вращение, которые очень важны, поскольку наблюдаемые сверхновые порождают весьма несферичный, «лохматый» остаток.

Многомерное моделирование показывает, что вокруг ядра сверхновой нейтрино нагревают плазму и создают в ней всплывающие пузыри и грибообразные потоки. Конвекция переносит энергию к ударным волнам, толкая их вверх и вызывая взрыв.

Когда взрывная волна немного замедляется, пузыри горячей расширяющейся плазмы, разделенные текущим вниз холодным веществом, сливаются. Постепенно образуются один или несколько пузырей в окружении нисходящих потоков. В результате взрыв становится асимметричным. Кроме того, заторможенная ударная волна может деформироваться, и тогда коллапс принимает форму песочных часов. Дополнительная неустойчивость возникает, когда ударная волна вырывается наружу и проходит через неоднородные слои предка сверхновой. При этом химические элементы, синтезированные на протяжении жизни звезды и во время взрыва, перемешиваются.

Поскольку остатки звезды в основном вылетают в одну сторону, находящаяся в центре нейтронная звезда отскакивает в другую, как скейтборд, откатывающийся назад, когда вы спрыгиваете с него. Наша компьютерная модель показывает скорость отскока более 1000 км/с, что соответствует наблюдаемому движению многих нейтронных звезд. Но некоторые из них движутся медленнее, вероятно, потому, что пузыри во время образовавшего их взрыва не успели слиться. Возникает единая картина, в которой различные варианты становятся результатом одного основного эффекта.

Несмотря на значительные достижения последних лет, ни одна из существующих моделей не воспроизводит весь комплекс явлений, связанных со взрывом сверхновой, и содержит упрощения. Полная версия должна использовать семь измерений: пространство (три координаты), время, энергия нейтрино и скорость нейтрино (описанную двумя угловыми координатами). Более того, это нужно сделать для всех трех типов, или ароматов нейтрино.

Но может ли взрыв быть спровоцирован различными механизмами? Ведь магнитное поле может перехватить вращательную энергию только что сформировавшейся нейтронной звезды и дать новый толчок ударной волне. Кроме того, оно будет выдавливать вещество наружу вдоль оси вращения в виде двух полярных джетов. Эти эффекты позволят объяснить наиболее мощные взрывы. В частности, гамма-всплески могут быть связаны с джетами, движущимися с околосветовой скоростью. Возможно, ядра таких сверхновых коллапсируют не в нейтронную звезду, а в черную дыру.

Пока теоретики улучшают свои модели, наблюдатели пытаются использовать не только электромагнитное излучение, но также нейтрино и гравитационные волны. Коллапс ядра звезды, его бурление в начале взрыва и его возможное превращение в черную дыру приводят не только к интенсивному выбросу нейтрино, но и сотрясают структуру пространства-времени. В отличие от света, который не может пробиться сквозь вышележащие слои, эти сигналы исходят прямо из бурлящего ада в центре взрыва. Созданные недавно детекторы нейтрино и гравитационных волн могут приоткрыть завесу над тайной смерти звезд.

Реактивный эффект сверхновой

Наблюдатели гадали, почему нейтронные звезды несутся по Галактике с огромной скоростью. Новые модели сверхновой с коллапсом ядра предлагают объяснение, основанное на внутренней асимметрии этих взрывов

Моделирование показывает, что асимметрия развивается уже в начале взрыва. Малые различия в начале коллапса звезды приводят к большим различиям в степени асимметрии

  • Каплан С.А. Физика звезд. М.: Наука, 1977.
  • Псковский Ю.П. Новые и сверхновые звезды. М.: Наука, 1985.
  • Шкловский И.С. Сверхновые звезды и связанные с ними проблемы. М.: Наука, 1976.
  • Supernova Explosions in the Universe. A. Burrows in Nature, Vol. 403, pages 727–733; February 17, 2000.
  • Full-Star Type Ia Supernova Explosion Models. F.K. Röpke and W. Hillebrandt in Astronomy and Astrophysics, Vol. 431, No. 2, pages 635–645; February 2005. Preprint available at arxiv.org/abs/astro-ph/0409286
  • The Physics of Core-Collapse Supernovae. S. Woosley and H.-Th. Janka in Nature Physics, Vol. 1, No. 3, pages 147–154; December 2005. Preprint available at arxiv.org/abs/astro-ph/0601261
  • Multidimensional Supernova Simulations with Approximative Neutrino Transport. L. Scheck, K. Kifonidis, H.-Th. Janka and E. Müller in Astronomy and Astrophysics (in press). Preprint available at arxiv.org/abs/astro-ph/0601302
  • Известно, что персонаж фильма Квентина Тарантино устроен проще, чем обычный человек, и представляет собой кожаный мешок, заполненный кровью под небольшим давлением. Подобным образом режиссёры боевиков упрощают внутреннее устройство любых боеприпасов: по их версии ручная граната или мина — это просто взрывчатка в тонком металлическом корпусе.

    Поэтому выстрел по гранате или мине приводит к зрелищному взрыву, в котором сгорают все главные злодеи. Так было, например, в седьмом фильме бесконечной саги «Форсаж», когда Вин Дизель сунул в вертолёт с плохими парнями мешок ручных гранат, а потом выстрелил в этот мешок. Всё исчезло в горячем оранжевом облаке. Не храните дома гранаты, как бы говорит нам режиссёр: одна шальная пуля, и от дома не останется камня на камне.

    На самом деле современная граната устроена чуть сложнее: в ней есть целая цепочка устройств, главная задача которой — сделать так, чтобы всё взорвалось тогда, когда нужно, а если это ручной боеприпас, то у него обязательно будет механизм, обеспечивающий подрыв с задержкой.

    Вы выдёргиваете чеку и отпускаете скобу. Заранее взведённая пружина срабатывает и разбивает хрупкий капсюль — но это еще не взыв гранаты. Воспламеняясь, содержимое капсюля только поджигает запальную трубку, которая тлеет несколько секунд. Наконец искра доходит до детонатора (маленького контейнера с детонирующей жидкостью), который взрывается от нагревания. За этим (маленьким) взрывом следует большой — это детонирует композиция B. Ради чего всё и затевалось.

    Казалось бы, отличная идея — обойти все эти приготовления и просто выстрелить в гранату, передав кинетическую энергию пули непосредственно композиции B. Проблема только в том, что композиция B (смесь гексогена и тринитротолуола) специальна разработана с расчётом на устойчивость к детонации от небольшого сотрясения, нагревания… даже от выстрела из ручного стрелкового оружия. Это полезное свойство для жидкости, которую используют как инициирующий заряд в атомной бомбе — а именно композицию B и использовали в первых американских бомбах, в частности, «Толстяке», упавшем на Нагасаки. Тринитротолуол особенно устойчив: его сделали такми, чтобы не взывался почём зря от выстрелов из мелкокалиберного оружия. На самом деле такой выстрел скорее сделает гранату непригодной, чем заставит взорваться. Верится с трудом, но вот видео — доказательство:

    Поэтому сотрудникам правоохранительных органов можно стрелять в вооружённых террористов — при условии, конечно, что последние вооружены не самодельными бомбами и чистым тротилом, а заводскими стандартиртизированными боеприпасами.

    Все описанное выше не означает, конечно, что стрельба по минам и гранатам — безопасное развлечение. Всегда есть шанс выстрелом разбить капсюль или попасть прямо в детонатор. Тем более не стоит, ориентируясь на всё вышесказанное, экспериментировать с распиливанием или сваркой снарядов. Мы только хотели сказать, что быть персонажем Вина Дизеля в реальной жизни не так просто.